Food and Behaviour Research

Donate Log In

Bifidobacterium longum 1714™ Strain Modulates Brain Activity of Healthy Volunteers During Social Stress

Wang H, Braun C, Murphy EF, Enck P (2019) Am J Gastroenterol.  2019 Apr. doi: 10.14309/ajg.0000000000000203. [Epub ahead of print] 

Web URL: Read this and related abstracts on PubMed here

Abstract:

OBJECTIVES:

Accumulating evidence indicates that the gut microbiota communicates with the central nervous system, possibly through neural, endocrine, and immune pathways, and influences brain function. B. longum 1714™ has previously been shown to attenuate cortisol output and stress responses in healthy subjects exposed to an acute stressor. However, the ability of B. longum 1714™ to modulate brainfunction in humans is unclear.

METHODS:

In a randomized, double-blinded, placebo-controlled trial, the effects of B. longum 1714™ on neural responses to social stress, induced by the "Cyberball game," a standardized social stress paradigm, were studied. Forty healthy volunteers received either B. longum1714™ or placebo for 4 weeks at a dose of 1 × 10 cfu/d. Brain activity was measured using magnetoencephalography and health status using the 36-item short-form health survey.

RESULTS:

B. longum 1714™ altered resting-state neural oscillations, with an increase in theta band power in the frontal and cingulate cortex (P < 0.05) and a decrease in beta-3 band in the hippocampus, fusiform, and temporal cortex (P < 0.05), both of which were associated with subjective vitality changes. All groups showed increased social stress after a 4-week intervention without an effect at behavioral level due to small sample numbers. However, only B. longum 1714™ altered neural oscillation after social stress, with increased theta and alpha band power in the frontal and cingulate cortex (P < 0.05) and supramarginal gyrus (P < 0.05).

FAB RESEARCH COMMENT:

See the associated news article: